Un estudio publicado en la revista Scientific Reports por el paleontólogo Daniel DeMiguel del Institut Català de Paleontologia Miquel Crusafont (ICP) analiza el papel de la dieta en el origen y diversificación de las especies que llegan a una isla por primera vez. El artículo se centra en la evolución de Hoplitomeryx -un rumiante fósil que se caracteriza por tener cinco apéndices a modo de cuernos en la cabeza- que tuvo lugar hace 6 millones de años en Gargano (Italia). El estudio del desgaste dental ha permitido conocer su alimentación y analizar cómo evolucionaron las especies fósiles a lo largo del tiempo.

Un estudio publicado recientemente en la revista PLOS ONE liderado por investigadores del Institut Català de Paleontologia Miquel Crusafont (ICP) ha reconstruido la dieta de tres especies de armadillos fósiles mediante un método conocido como Análisis de Elementos Finitos. El estudio confirma una dieta carnívora para M. outesi i herbívora (ausente en las espècies actuales) en V. maxima.

Secció transversal d'una de les dents dels micromamífers estudiats, Ruscinomys schaubi

Durante muchos años, los paleontólogos han clasificado a los mamíferos fósiles como consumidores de animales o de plantas en función de un par de mediciones simples de distancia de sus dientes. Sin embargo, estas medidas podrían ser engañosas, según los resultados recientemente publicados por Jan van Dam, Josep Fortuny y LJ Van Ruijven en la revista de 'Palaeogeography, Palaeoclimatology, Palaeoecology' (Palaeo3). 

 

Van Dam y Fortuny son investigadores del Institut Català de Paleontologia Miquel Crusafont (ICP), cerca de Barcelona.Van Ruijven, del Centro Académico Dental en Amsterdam (ACTA), es experto en exploración microCT, que es el escaneo por tomografía computarizada de objetos pequeños (menos de unos pocos centímetros). Por lo general, la investigación en tomografía está ligada a las enfermedades humanas, pero en el ICP se utiliza para extraer información oculta en la forma y la estructura de fósiles. Un desafío importante es expresar la forma y estructura de un diente en sólo unos pocos parámetros, con el fin de aprender acerca de lo que estos animales comieron hace millones de años.

La hipsodoncia (que mide la altura relativa de la corona dental) y la proporción de esmalte son dos parámetros muy útiles para estudiar el comportamiento en la dieta. Hasta ahora, los paleontólogos han medido la hipsodoncia como una longitud simple, la anchura y la altura, y la proporción de esmalte mirando algunas secciones transversales. La hipsodoncia se ha definido a menudo con la altura máxima, sin embargo según reivindican van Dam, Fortuny y Ruijvenel valor medio podría ser un mejor indicador de la dieta. Este parámetro se calcula en base al volumen de toda la corona dental, medida a partir de una simulación computacional. De manera similar, una proporción 2D del esmalte calculada en una sección transversal puede ser reemplazada por una proporción 3D calculada para todo el diente. La innovación es en dos sentidos: primero, el uso de técnicas de exploración 3D, tales como micro-CT, que permiten medir volúmenes dentales con alta precisión. En segundo lugar, la definición de dos nuevos índices de la dieta dentro de un mismo marco geométrico.

 

Diferències entre la hispodòncia calculada com a valor màxim o mitjà de tres dels micromamífers estudiats.

Ahora es necesario desarrollar una base de datos de especies, dado que los primerosresultados muestran que, utilizando este nuevo método, las posiciones relativasde los taxones en la continuidad entre los consumidores de animales y de plantas cambian. De momento se han analizado algunos roedores e insectívoros, pero elmétodo se puede aplicar a todos los mamíferos, en principio. Parece ser que en otrosgrupos, como los primates, la correlación entre hipsodoncia y grosor delesmalte es más débil, debido a que el espectro de la dieta no es tan amplio comoen micromamíferos, en los que se incluyen consumidores puros de insectos o de hierba.

+ info van Dam, J.A.,Fortuny, J. & van Ruijven, L.J. (2011). MicroCT-scans of fossil micromammalteeth: Re-defining hypsodonty and enamel proportion using true volume. Palaeogeography, Palaeoclimatology, Palaeoecology311: 303-310.

 

Secció histològica d’una dent de Myotragus balearicus analitzada en microscopia òptica de llum polaritzada.

Investigadores del ICP publican hoy en los Proceedings of the Royal Society B una de las primeras evidencias a partir del registro fósil que apoya la teoría evolutiva del envejecimiento, según la cual las especies que evolucionan en ecosistemas con baja mortalidad y con una limitación de recursos tienden a ser más longevas. Un paradigma de estos ambientes son las islas.

El trabajo muestra que la altura de los dientes de mamíferos endémicos insulares es un indicador de su longevidad, y pone en cuestión el uso de este rasgo morfológico como un indicador exclusivo para inferir la dieta de las especies fósiles, así como para interpretar el clima en el que vivían.

Los sistemas insulares funcionan a menudo como laboratorios naturales para poner a prueba hipótesis evolutivas, dado que son menos complejos que los sistemas continentales. El aumento de la longevidad de las especies endémicas de islas es una adaptación que predice la teoría evolutiva del envejecimiento, en el marco de una estrategia evolutiva que las empuja hacia un ciclo de vida más lento, debido a la ausencia de depredadores y la limitación de recursos. En este contexto, Xavier Jordana y el resto de investigadores que firman el trabajo que publica hoy la edición online de los Proceedings of the Royal Society B se preguntan si el aumento de la altura de los dientes en los herbívoros endémicos de islas puede ser una respuesta evolutiva a esta longevidad. Esto cuestionaría el consenso que hasta ahora explicaba este rasgo morfológico principalmente a partir de diferencias en la dieta y el clima.

La conclusión del trabajo «Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals» es que sí, que Myotragus balearicus, la especie fósil escogida para este estudio, necesitaba unos dientes más altos para llegar a vivir tantos años. La hipsodoncia, como denominan los expertos al hecho de tener una corona dental más alta, puede ser un indicador de especies más longevas.

Tal y como explica el investigador del ICP Xavier Jordana, profesor de la Universitat Autònoma de Barcelona (UAB) en los másteres oficiales en Biología Humana i en Paleontología y autor principal de este trabajo, «el estudio se centra en una especie fósil, pero nuestros resultados tienen implicaciones en los mamíferos herbívoros en general, extintos y actuales, y más concretamente en las especies endémicas de islas. Los endemismos insulares comparten una serie de características comunes, conocidas como el síndrome de la isla, y diferentes a las de sus parientes continentales, puesto que evolucionan en unas condiciones ecológicas especiales, como son la ausencia de depredadores, la alta densidad poblacional y la escasez de recursos.»

 

L'investigador de l'ICP Xavier Jordana amb una mandíbula de Myotragus balearicus a la mà.

La investigación que se publica ahora analiza la dieta, la longevidad y el patrón de mortalidad de M. balearicus, un bóvido fósil endémico de las Islas Baleares. El trabajo concluye que, a pesar de ser extremadamente hipsodonto, M. balearicus era un herbívoro mayoritariamente ramoneador, que se alimentaba de hojas y brotes de árboles y arbustos, y probablemente, también, de tubérculos y raíces, que implican un mayor desgaste de la dentadura puesto que hay que remover la tierra para llegar a ellos. Aun así, no llegaba a tener una dieta tan abrasiva como la de los herbívoros que se alimentan mayoritariamente de pastos y que, por lo tanto, presentan las dentaduras más altas. Este tipo de dieta, sin embargo, no es suficiente para explicar la hipsodoncia de Myotragus.

Al analizar la longevidad de M. balearicus a partir de las líneas de crecimiento anual del cemento de los dientes, los investigadores obtienen una medida de unos 27 años, casi el doble de lo que se esperaría para un bóvido de su masa corporal. Además, el estudio del patrón de mortalidad en dos poblaciones de M. balearicus, una en Cova Estreta y la otra en Cova des Moro en Mallorca, muestra tasas de supervivencia en edades juveniles y adultas más elevadas que en los bóvidos continentales actuales. Es decir, una gran parte de la población lograba edades avanzadas y, por lo tanto,M. balearicus era una especie con un ritmo de senescencia lento, o, lo que es lo mismo, envejecía tarde.

Todo ello son resultados consistentes con la teoría evolutiva del envejecimiento que predice el retraso de la senescencia en poblaciones con un índice de mortalidad extrínseca bajo. En un entorno en el que pocos elementos externos pueden causar la muerte de los individuos de una especie, como es el caso de la falta de depredadores en una isla, dicha especie se adapta cambiando su ritmo de envejecimiento y la duración de su vida. En el caso de los herbívoros, una manera de hacerlo es seleccionando aquellos individuos de la población que tengan dientes más altos, para los que la senescencia empezará más tarde.

 

Reconstrucció de Myotragus balearicus, exposada al Museu de l'ICP a Sabadell.

Myotragus, un modelo para los estudios de evolución

El género fósil Myotragus ha resultado un modelo ideal para hacer estudios de evolución en las islas y M. balearicuses la especie terminal, que se extinguió hace unos 3.000 años. Myotragus sobrevivió totalmente aislado en Mallorca y Menorca durante más de 5 millones de años, desde el Plioceno hasta el Holoceno. Durante su evolución, Myotragussufrió cambios importantes, que afectaron especialmente el sistema locomotor y su tamaño, así como también su sistema nervioso y alimentario. El enanismo, la disminución del cerebro y los cambios en la dentadura son los rasgos evolutivos más característicos. Muchos de estos rasgos morfológicos son compartidos por el conjunto de las faunas insulares, como es el caso del aumento de la altura de la corona dental de los molares.

En el estudio se han usado restos fósiles de M. balearicus, recuperados en diferentes yacimientos de Mallorca, especialmente en Cova Estreta (Pollença), Cova des Moro (Manacor) y Cova Moleta (Sóller). Actualmente, estos fósiles están depositados en las colecciones del Museo del Institut Català de Paleontologia Miquel Crusafont, en Sabadell, y el Instituto Mediterráneo de Estudios Avanzados y el Museo Balear de Ciencias Naturales, en Mallorca.

+ info Jordana, X., Marín-Moratalla, N., DeMiguel, D., Kaiser, Th. & Köhler, M. (2012) Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals. Proceedings of the Royal Society B. doi:10.1098/rspb.2012.0689

 

Esquirol gris

Los investigadores del ICP Isaac Casanovas y Jan van Dam publican hoy en la revista PLOS ONE un artículo donde reconstruyen la dieta de las primeras ardillas a partir de la integración de datos provenientes de la forma de la mandíbula de especies actuales y extintas y del estudio de su historia evolutiva. El trabajo ha permitido deducir que las ardillas que vivieron hace 36 millones de años se alimentaban de nueces y de semillas y que la mayoría de especies actuales han cambiado poco respecto a sus ancestros.

La anatomía de los seres vivos está determinada por varios factores. Por un lado, la forma de una estructura concreta, como puede ser la de la mandíbula o de las extremidades, puede haber evolucionado como adaptación para realizar una función determinada. Por otro lado, es posible que una especie haya heredado esa morfología de un ancestro. En este caso la filogenia, es decir la relación de parentesco entre dos especies, tendría más peso que la adaptación. Del mismo modo que nosotros nos parecemos más a nuestros padres o hermanos que a personas con las que no estamos emparentadas, dos especies próximas tenderían a parecerse más que dos escogidas al azar. Cuando se estudia la evolución de cualquier estructura, como la mandíbula en este caso, a menudo resulta difícil decidir si la adaptación o la filogenia han determinado la forma. Sin embargo, recientemente se han desarrollado métodos matemáticos muy complejos que permiten evaluarlo.

En el estudio que se publica hoy en la revista PLOS ONE, los investigadores Isaac Casanovas y Jan van Dam del Institut Català de Paleontologia Miquel Crusafont (ICP)  han aplicado estos métodos a las especies de ardillas actuales y han evaluado qué influencia tiene el tipo de alimentación en la forma de la mandíbula. Han comparado 301 mandíbulas de 44 especies diferentes de ardillas y han determinado que la forma de la mandíbula puede ser utilizada para inferir de forma fiable el tipo de alimentación de una determinada especie. Esto ha permitido concluir que Douglassciurus Jefferson, la especie de ardilla más antigua que se conoce, se alimentaba de nueces y semillas hace unos 36 millones de años.

 

Formes mandibulars d'esquirols, tipus d'alimentació i espècie a la que corresponen. Isaac Casanovas.

La forma de la mandíbula de las ardillas que se alimentan de semillas o frutos con cáscaras muy duras, como la ardilla gigante índico, se caracteriza por un cuerpo robusto (la parte de la mandíbula que lleva los dientes) y unos procesos largos (las estructuras hueso que encajan la mandíbula con el cráneo y sirven para la inserción de los músculos). Esta forma les permite morder con mucha fuerza. En cambio, las que se alimentan de hojas, grano o insectos presentan mandíbulas más largas y delicadas porque no requieren un mordisco potente con los dientes incisivos. La ardilla gris, así como la mayoría de especies, tiene una mandíbula intermedia entre estos dos grandes tipos, apto para consumir prácticamente cualquier cosa.

A pesar de que la forma de la mandíbula depende en gran parte de la dieta, este estudio demuestra que también está fuertemente condicionada por la filogenia. Muchas especies han mantenido la dieta a base de nueces y semillas de sus ancestros y su mandíbula no ha cambiado demasiado durante muchos millones de años.

Si funciona, ¿por qué cambiar?

Actualmente hay unas 200 especies de ardillas distribuidas por bosques de casi todo el planeta. En la mayoría de casoshan conservado las características de sus ancestros, lo que hace que a veces se les llame "fósiles vivientes". Aunque las ardillas han sido tradicionalmente consideradas como un grupo conservador que ha sufrido pocos cambios desde su origen, la presencia de especies altamente especializadas demuestra que no es una característica intrínseca de este grupo.

Determinados grupos de ardillas han desarrollado adaptaciones notables que les han permitido especializarse en determinados recursos alimenticios. La subfamilia de los callosciurininos, un grupo formado por más de 60 especies que viven en los bosques tropicales del sudeste asiático, presenta especies con alimentaciones fuerza sorprendentes, incluyendo el único ardilla exclusivamente insectívoro y otras que comen corteza. Los callosciurininos llegaron al sudeste asiático hace unos 21 millones de años y allí se diversificaron para aprovechar los variados recursos que ofrecen los bosques tropicales. En estos bosques hay muchas especies de ardillas y todas muy diferentes, conmandíbulas especializadas para alimentarse de recursos muy concretos. Por el contrario, los bosques templados de Europa o América del Norte tienen una diversidad de plantas y recursos mucho menor, y por tanto también haymenos especies de ardillas, la mayoría de las cuales comen nueces, frutos y semillas como sus ancestros .

De algún modo se puede afirmar que en la naturaleza las formas que funcionan se mantienen a lo largo de la evolución y las ardillas serían un buen ejemplo de esta ley. Si funciona, ¿por qué cambiar?.

 + info: Casanovas-Vilar, I. & Van Dam, J. (2013). Conservatism and adaptability during squirrel radiation: what is mandible shape telling us? PLOS ONE. http://dx.plos.org/10.1371/journal.pone.0061298

 

Patrons:

logo generalitat        logo uab

Guardons:

Excellence in research

Amb el suport de:

logo icrea    logo ue

Membres de:

logo cerca b